Glaucoma y Tomografía de Coherencia Óptica

Reinaldo A. García, Verónica Oria, Luis Silva, Jesús Salvatierra, Mariana Mata P., Luis Suárez Tata, Vanesa Idrogo

Resumen


A lo largo de este artículo el lector prodrá encontrar las razones por las cuales es necesario realizar el estudio de OCT en el Glaucoma. Los autores intentarán mostrar las diferentes formas de interpretación de los programas para Glaucoma de los equipos de tomografía RTvue de la casa Optovue® y Spectralis de Heidelberg®, se intentará demostrar cuales son los errores más comunes en la realización de los mismos que conllevan a una erronea interpretación y diagnóstico y por último se mostrarán
algunos ejemplos que permitirán al lector poner en práctica lo leído.

Palabras clave


Tomografía de Coherencia Óptica; Glaucoma; Capa de fibras nerviosas; Complejo de Células Ganglionares; Daño pre-perimétrico; Perimetría automatizada standard (SAP, por sus siglas en inglés).

Texto completo:

PDF

Referencias


Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Kass MA. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:714-20.

Hood DC. Relating retinal nerve fiber thickness to behavioral sensitivity in patients with glaucoma: application of a linear model. J Opt Soc Am A Opt Image Sci Vis 2007;24:1426-30.

Johnson CA, Cioffi GA, Liebmann JR, Sample PA, Zangwill LM, Weinreb RN. The relationship between structural and functional alterations in glaucoma: a review. Semin Ophthalmol 2000;15:221-33.

Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb

RN. The Structure and Function Relationship in Glaucoma:

Implications for Detection of Progression and Measurement

of Rates of Change. Invest Ophthalmol Vis Sci 2012;53:6939-46.

Fremont AM, Lee PP, Mangione CM, Kapur K, Adams JL,

Wickstrom SL, Escarce JJ. Patterns of care for open-angle

glaucoma in managed care. Arch Ophthalmol 2003;121:777-83.

Hertzog LH, Albrecht KG, LaBree L, Lee PP. Glaucoma care and conformance with preferred practice patterns. Examination of the private, community-based ophthalmologist. Ophthalmology 1996;103:1009-13.

Azuara-Blanco A, Katz LJ, Spaeth GL, Vernon SA, Spencer F, Lanzl IM.Clinical agreement among glaucoma experts in the detection of glaucomatous changes of the optic disk using simultaneous stereoscopic photographs. Am J Ophthalmol 2003;136:949-50.

Keltner JL, Johnson CA, Quigg JM, Cello KE, Kass MA,

Gordon MO. Confirmation of visual field abnormalities in the Ocular Hypertension Treatment Study. Ocular

Hypertension Treatment Study Group. Arch Ophthalmol

;118:1187-94.

Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL 3rd. The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci 2007;48:763-73.

González de la Rosa MA. [Update on glaucoma diagnosis and follow-up]. Arch Soc Esp Oftalmol 2003;78:299-314.

Artes PH, Chauhan BC.Longitudinal changes in the visual field and optic disc in glaucoma. Prog Retin Eye Res

;24:333-54.

Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 2001;119:1492-9.

Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet 2004;363:1711-20.

Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, Voskanian S, Velazquez L, Pakter HM, Pedut-Kloizman T, Fujimoto JG, Mattox C. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 2003;110:177-89.

Bagga H, Greenfield DS. Quantitative assessment of structural damage in eyes with localized visual field abnormalities. Am J Ophthalmol 2004;137:797-805.

Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN.Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005;139:44-55.

Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell

loss is size dependent in experimental glaucoma. Invest

Ophthalmol Vis Sci. 1993;34:395-400.

Desatnik H, Quigley HA, Glovinsky Y. Study of central retinal ganglion cell loss in experimental glaucoma in monkey eyes. J Glaucoma 1996;5:46-53.

Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 2009;116:2305-14.

Garas A, Vargha P, Holló G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 2010;117:738-46.

Sehi M, Grewal DS, Sheets CW, Greenfield DS. Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am J Ophthalmol 2009 ;148:597-605.

Savini G, Carbonelli M, Barboni P. Retinal nerve fiber

layer thickness measurement by Fourier-domain optical

coherence tomography: a comparison between cirrus-HD OCT and RTVue in healthy eyes. J Glaucoma. 2010;19:369-72.

Pierro L, Giatsidis SM, Mantovani E, Gagliardi M. Macular thickness interoperator and intraoperator reproducibility in healthy eyes using 7 optical coherence tomography instruments. Am J Ophthalmol 2010;150:199-204.


Comentarios sobre este artículo

Ver todos los comentarios